
www.manaraa.com

Abstract

Our objective in this paper is to answer the following question: what mechanisms
are required in a general-purpose multiuser database management system (DBMS)
to facilitate the integrity objectives of information systems? In a nutshell our con-
clusion is that realistic mechanisms do exist. Although existing commercial products
fall far short of providing the requisite mechanisms, they can be easily extended to
incorporate these mechanisms. Our principal contribution is to identify these mech-
anisms and point out where gaps still remain. We have also bridged the terminology
and concepts of database and security specialists in a coherent manner. In the more
detailed considerations the focus of this paper is on relational DBMS's.

Keywords: Integrity, Principles, Mechanisms, Database Management Systems, Se-
curity

www.manaraa.com

Integrity Principles and Mechanisms in

Database Management Systems �

Ravi Sandhu

Sushil Jajodia

Center for Secure Information Systems

and

Department of Information and Software Systems Engineering

George Mason University, Fairfax, VA 22030, USA

March 12, 1991

�Computers & Security, Volume 10, Number 5, August 1991, pages 413-427.

www.manaraa.com

1 INTRODUCTION

Information integrity means di�erent things to di�erent people, and will probably

continue to do so for some time. In spite of considerable e�ort recent attempts

to establish a consensus de�nition have been unsuccessful [19]. So the �rst order

of business is to de�ne integrity. Our approach to this question is pragmatic and

utilitarian. The objective is to settle on a de�nition within which we can achieve

practically useful results, rather than searching for some absolute and philosophically

airtight formulation.

1.1 A De�nition of Integrity

We de�ne integrity as being concerned with the improper modi�cation of informa-

tion (much as con�dentiality is concerned with improper disclosure). We understand

modi�cation to include insertion of new information, deletion of existing information

as well as changes to existing information. This de�nition of integrity is considerably

broader than the traditional use of this term in the database literature. For instance

Date [5] says: \Security refers to the protection of data against unauthorized disclo-

sure, alteration, or destruction; integrity refers to the accuracy or validity of data."

The consensus view among security researchers is that integrity is one component of

security and accuracy/validity is one component of integrity [8, 19, for instance].

The reader has probably seen similar de�nitions using \unauthorized" instead of

\improper." Our use of the latter term is signi�cant and should not be dismissed

lightly. We particularly wish to emphasize two points. Firstly, integrity breaches can

and do occur without authorization violations. In other words authorization is only

1

www.manaraa.com

one piece of the solution and we must also deal with the malicious user who exercises

his authorization improperly. Secondly, our de�nition raises the key question: what

do we mean by improper? It is obvious that this question intrinsically cannot have

an universal answer, so it is futile to try to answer it outside of a given context.

We are speci�cally interested in information systems used to control and account for

an organization's assets and resources. In such systems the primary security goal is

prevention of fraud and errors.

1.2 The Insider Threat

It is important to understand that the threat posed by a corrupt authorized user is

quite di�erent in the context of integrity as compared to secrecy.

A corrupt user can leak secrets by (i) using the computer to legitimately access

con�dential information, and then (ii) passing on this information to an improper

destination by some non-computer means of communication (e.g., a telephone call).

It is simply impossible for the computer to know whether or not step (i) was followed

by step (ii). We therefore have no choice but to trust our insiders to be honest and

alert. The military and government sectors have established elaborate procedures

for this purpose, while the commercial sector is much more informal in this respect.

Security research which focuses on secrecy therefore considers the principal threat to

be Trojan Horses embedded in programs, i.e., corrupt programs, rather than corrupt

users (see [9] for example).

Analogously, a corrupt user can compromise integrity by (i) manipulating stored

data or (ii) falsifying source or output documents. A computer system can do little

by itself to solve the problem of false source or output documents, for which we

2

www.manaraa.com

must rely on the traditional techniques of paper-based manual systems. However the

manipulation of stored data simply cannot be done without use of the computer.

Therefore, in principle, the computer system is in a position to detect or prevent such

manipulation. Integrity researchers must therefore focus on the corrupt user as the

principal problem. In fact the Trojan Horse problem can itself be viewed as a problem

of corrupt system or application programmers who improperly modify the software

under their control. Also note that the problem of the corrupt user remains even if

we are willing to trust all our software to be free of Trojan Horses.

1.3 Integrity Principles and Mechanisms

Our objective in this paper is to answer the following question: what mechanisms are

required in a general-purpose multiuser DBMS to help achieve the integrity objectives

of information systems? There are many compelling reasons to focus on DBMSs

for this purpose. This is particularly true when we focus on mechanisms. DBMSs

provide signi�cant data semantics beyond the usual Operating System (OS) notion

of �le being an interpreted sequence of bytes. DBMSs also have the wonderful ability

to express and manipulate complex relationships. This comes in very handy when

dealing with sophisticated integrity policies.

The Operating System must clearly provide some core integrity and security mech-

anisms. At the very least one needs a mechanism to enforce encapsulation of a

database, i.e., to ensure that all manipulation of the database can only be through

the DBMS. The question of what minimal features are required in the OS is an im-

portant and non-trivial one, but is outside the scope of the present paper. For now

let us assume that OS's with the requisite features are available and ask ourselves

3

www.manaraa.com

what features can the DBMS give us?

The bulk of integrity mechanisms properly belong in the DBMS. Integrity policies

are intrinsically application speci�c and the OS simply cannot provide the means

to state application-speci�c concerns. One might then argue: why not put all the

mechanism in the application code? There are several persuasive reasons not to do

this. Firstly, any assurance that mechanisms interspersed within application code

will be correct or even comprehensible is rather dubious. Secondly, the whole point

of a database is to support multiple applications. A particular application may well

be in a position to handle all its integrity requirements. Yet it is only the DBMS

which can prevent other applications from corrupting the database. Thirdly, putting

mechanisms in application code is not conducive to reuse of common mechanism

among di�erent applications.

The rest of the paper is organized as follows. In section 2 we discuss principles for

achieving integrity in information systems. In section 3 we describe the mechanisms

required in a DBMS to support these high level principles. In some of the more

detailed consideration we will limit ourselves speci�cally to relational DBMS's. As

we will see traditional DBMS mechanisms provide the foundations for this purpose,

but by themselves do not go far enough. Section 4 concludes the paper.

2 INTEGRITY PRINCIPLES

We begin by describing basic principles for achieving information integrity. These

principles can be viewed as high level objectives which are made more concrete when

speci�c mechanisms are proposed to support them. In other words these principles

4

www.manaraa.com

lay down broad goals without specifying how to achieve them. We will subsequently

map these principles to DBMS mechanisms. Principles lay out what needs to be done

while mechanisms establish how these principles are to be achieved.

We emphasize that the integrity principles themselves are independent of the

DBMS context. They apply equally well to any information system be it a manual

paper-based system, a centralized batch system, an interactive and highly distributed

system, etc. Our objective in this paper is to interpret these principles in the DBMS

context and identify DBMS mechanisms to support them. We also point out that

many, if not all, of these principles are equally applicable to secrecy as well as integrity.

Our focus in this paper is on integrity. Analysis of the relevance and signi�cance of

these principles to secrecy objectives is outside the scope of this paper.

The nine integrity principles enumerated below are abstracted from a variety of

sources. The more recent literature includes the Clark and Wilson papers [1, 2, 3]

and the NIST workshops [18, 19]. The \older" literature is too numerous to cite

individually. For those unfamiliar with this literature some useful starting points

are [6, 8, 10, 13, 20]. The reader has probably seen similar lists in the past. We believe

the time is right for a revised formulation of major principles, particularly in view

of the recent resurgence of interest in integrity. We emphasize that these principles

express what needs to be done rather than how it is going to be accomplished. The

latter question is addressed in the next section.

1. Well-formed Transactions. Clark and Wilson [1] have de�ned this principle

as follows: \The concept of the well-formed transaction is that a user should

not manipulate data arbitrarily, but only in constrained ways that preserve or

5

www.manaraa.com

ensure the integrity of the data." This principle has also been called constrained

change [3], i.e., data can only be modi�ed by well-formed transactions rather

than by arbitrary procedures. Moreover the well-formed transactions are known

(\certi�ed") to be individually correct with some (mostly qualitative) degree of

assurance.

2. Authenticated Users. This principle stipulates that modi�cations should only

be carried out by users whose identity has been authenticated to be appropriate

for the task.

3. Least Privilege. The notion of least privilege was one of the earliest principles to

emerge in security research. It has classically been stated in terms of processes

(executing programs) [20], i.e., a process should have exactly those privileges

needed to accomplish its assigned task, and none extra. The principle applies

equally well to users, except that it is more di�cult to precisely delimit the

scope of a user's \task." A process is typically created to accomplish some

very speci�c task and terminates on completion. A user on the other hand is

a relatively long-lived entity and will be involved in varied activities during his

lifespan. His authorized privileges will therefore exceed those strictly required

at any given instant. In the realm of con�dentiality least privilege is often

called need-to-know. In the integrity context it is appropriately called need-to-

do. Another appropriate term for this principle is least temptation, i.e., do not

tempt people to commit fraud by giving them greater power than they need.

4. Separation of Duties. Separation of duties is a time honored principle for pre-

vention of fraud and errors, going back to the very beginning of commerce.

6

www.manaraa.com

Simply stated, no single individual should be in a position to misappropriate

assets on his own. Operationally this means that a chain of events which a�ects

the balance of assets must require di�erent individuals to be involved at key

points, so that without their collusion the overall chain cannot take e�ect.

5. Reconstruction of Events. This principle seeks to deter improper behavior by

threatening its discovery. The ability to reconstruct what happened in a system

stems from the notion of accountability. Users are accountable for their actions

to the extent that it is possible to determine what they did. Reconstruction

of events is also a necessary adjunct to least privilege for two reasons. Firstly

least privilege, even taken to its theoretical limit, will leave some scope for

fraud. Secondly a zealous application of least privilege is not a terribly e�cient

way to run an organization. It conveys the image of an enterprise enmeshed

in red tape.� So practically users must be granted more privileges than are

strictly required. We therefore should be able to accurately reconstruct essential

elements of a system's history, in order to detect misuse of privileges.

6. Delegation of Authority. This principle �lls in a piece missing from the Clark

and Wilson papers and much of the discussion they have generated.y It con-

cerns the critical question of how privileges are acquired and distributed in an

organization? Clearly the procedures to do so must re
ect the structure of the

�This comment is made in the context of users rather than processes (transactions). Least
privilege with respect to processes is more of an internal issue within the computer system, and its
zealous application is most desirable (modulo the performance and cost penalties it imposes).

yThe closest concept that Clark and Wilson have to this principle is their Rule E4 which they
summarize as follows [1, �gure 1]: \Authorization lists changed only by the security o�cer." This
notion of a central security o�cer as an authorization czar is inappropriate and unworkable. Rational
security policies can be put in place only if appropriate authority is vested in end-users.

7

www.manaraa.com

organization and allow for e�ective devolution of authority. Individual man-

agers should have maximum
exibility regarding information resources within

their domain, tempered by constraints imposed by their superiors. Without

this
exibility at the end-user level, the authorization will most likely be inap-

propriate to the actual needs. This can only result in security being perceived

as a drag on productivity and something to be bypassed whenever possible.

7. Reality Checks. This principle has been well motivated by Clark and Wilson [3]

as follows: \A cross-check with the external reality is a central part of integrity

control. . . . integrity is meaningful only in terms of the relation of the data

to the external world." Or in more concrete terms: \If an internal inventory

record does not correctly re
ect the number of items in stock, it makes little

di�erence if the value of the recorded inventory has been re
ected correctly in

the company balance sheet." By de�nition reality checks entail activity external

to the computer system.

8. Continuity of Operation. This principle states that system operations should

be maintained to some appropriate degree in the face of potentially devastating

events which are beyond the organization's control. This catch-all description

is intended to include natural disasters, power outages, disk crashes and the

like. With this principle we are clearly stepping into the scope of availability.

We have mentioned it here for the sake of completeness. One would be hard

pressed to claim that a system which does not address this requirement can at

the same time have a high measure of integrity.

8

www.manaraa.com

9. Ease of Safe Use.z In a nutshell this principle requires that the \easy" ways to

operate a system should also be the safest ones. It is important to acknowledge

this principle because of the ample evidence that security measures are all too

often incorrectly applied or simply bypassed by system managers. This hap-

pens due to a combination of (i) poorly designed defaults (such as inde�nite

retention of vendor-supplied passwords for privileged accounts), (ii) awkward

and cumbersome interfaces (such as requiring many keystrokes to e�ect simple

changes in authorization), (iii) lack of tools for authorization review, or (iv) mis-

matched policy and mechanism (\. . . the extent that the user's mental image

of his protection goals matches the mechanism he must use, mistakes will be

minimized." [20]).

It is inevitable that these principles are fuzzy, abstract and high level. In develop-

ing an organization's security policy one would elaborate on each of these principles

and make precise the meaning of terms such as \appropriate" and \proper." How to

do so systematically is perhaps the most important question in successful application

of these principles. In other words how does one articulate a comprehensive policy

based on these high level objectives? This question is beyond the scope of this doc-

ument. Our present focus is on the more technical question: how do these principles

translate into concrete mechanisms in a DBMS?

The goals encompassed by these principles may appear overwhelming. After all in

the extreme these principles amount to solving the total system correctness problem,

which we know is well beyond the state of the art. Fortunately, in our context, the

zThanks to Stanley Kurzban and William Murray for coining this particular term.

9

www.manaraa.com

degree to which one would seek to enforce these objectives and the assurance of this

enforcement are matters of risk management and cost-bene�t analysis. Laying out

these principles explicitly does give us the following major bene�ts.

� The overall problem is partitioned into smaller components for which solutions

can be developed independently of each other (i.e., divide and conquer).

� The principles suggest common mechanisms which belong in the DBMS and

can be reused across multiple applications.

� The principles provide a set against which the mechanisms of speci�c DBMS's

can be evaluated (in an informal sense).

� The principles similarly provide a set on the basis of which the requirements of

speci�c information systems can be articulated.

� Last, but not the least, the principles invite criticism from the security commu-

nity particularly regarding what may have been left out.

3 INTEGRITY MECHANISMS

In this section we consider DBMS mechanisms to facilitate application of the prin-

ciples de�ned in the previous section. The principles have been applied in prac-

tise [16, 26, for instance] but with most of the mechanism built into application

code. Providing these mechanisms in the DBMS is an essential prerequisite for their

widespread use.

Our mapping of principles to mechanisms is summarized in table 1. Some of these

mechanisms are available in commercial products. Others are well established in the

10

www.manaraa.com

database literature. There are also some newer mechanisms which have been proposed

more recently, e.g., transaction controls for separation of duties [22], the temporal

model for audit data [12] and propagation constraints for dynamic authorization [21,

23]. Finally there are places where existing mechanisms and proposals need to be

extended in novel ways. Overall the required mechanisms are quite practical and well

within the reach of today's technology.

3.1 Well-formed Transactions

The concept of a well-formed transaction corresponds very well to the standard DBMS

concept of a transaction [10, 11]. A transaction is de�ned as a sequence of primitive

actions which satis�es the following properties.

1. Failure atomicity: either all or none of the updates of a transaction take e�ect.

(We understand update to mean modi�cation, i.e., it includes insertion of new

data, deletion of existing data and changes to existing data.)

2. Serializability: the net e�ect of executing a set of transactions is equivalent to

executing them in some sequential order, even though they may actually be

executed concurrently (i.e., their actions are interleaved or simultaneous).

3. Progress: every transaction will eventually complete, i.e., there is no inde�nite

blocking due to deadlock and no inde�nite restarts due to livelocks.

4. Correct state transform: each transaction if run by itself in isolation and given

a consistent state to begin with will leave the database in a consistent state.

We will elaborate on these properties in a moment.

11

www.manaraa.com

First let us note the basic requirement that the DBMS must ensure that updates

are restricted to transactions. Clearly, if users are allowed to bypass transactions and

directly manipulate relations in a database, we have no foundation to build upon. In

other words updates should be encapsulated within transactions.x This restriction

may seem too strong because in practice there will always be a need to perform ad

hoc updates. However, ad hoc updates can themselves be carried out by means of

special transactions! Of course the authorization for these special ad hoc transactions

should be carefully controlled and their usage properly audited.

Secondly, it is clear that the set of database transactions is itself going to change

during the system life cycle. Now the same nine principles of the previous section

apply with respect to maintaining the integrity of the transactions. In particular

transactions should be installed, modi�ed and supplanted only by the use of well-

formed \transaction-maintenance transactions." One can apply this argument once

again to say that the transaction-maintenance transactions themselves need to be

maintained by another set of transactions, and so on inde�nitely. We believe there

is little to be gained by having more than two steps in this potentially unbounded

sequence of transaction-maintenance transactions. The rate of change in the transac-

tion set will be signi�cantly slower than the rate of change in the data base proper.

Going one step further, the rate of change in the transaction-maintenance transactions

will be yet slower to the point where, for all practical purposes, these can be viewed

as static over the lifespan of typical systems. With this perspective the data base

administrator is responsible for installing and maintaining transaction-maintenance

xAt this point it is worth recalling that the database itself must be encapsulated within the DBMS
by the Operating System.

12

www.manaraa.com

transactions, which in turn control the maintenance of actual database transactions.

We now return to considering the four properties of DBMS transactions enu-

merated earlier. The �rst three properties|failure atomicity, serializability and

progress|can be achieved in a purely \syntactic" manner, i.e., completely indepen-

dent of the application. These three requirements for a transaction are recognized in

the database literature as appropriate for the DBMS to implement. Mechanisms to

achieve these objectives have been extensively researched in the last �fteen years or

so, and our understanding of this area can certainly be described as mature. The ba-

sic mechanisms|two-phase locking, timestamps, multi-version databases, two-phase

commit, undo-redo logs, shadow pages, deadlock detection and prevention|have been

identi�ed and should soon make their way into commercial products. In developing

integrity guidelines and/or evaluation criteria one might consider some progressive

measure of the extent to which a particular DBMS meets these objectives. For in-

stance, with failure atomicity, is there a guarantee that we will know which of the

two possibilities occurred? Similarly, with serializability, does the DBMS enforce the

concurrency control protocol or does it rely on transactions to execute explicit com-

mands for this purpose? And, with the issue of progress, do we have a probabilistic

or absolute guarantee? Such questions must be systematically addressed.

The fourth property of correct state transforms is the ultimate bottleneck in realiz-

ing well-formed transactions. It is also an objective which cannot be achieved without

considering the semantics of the application. The correctness issue is of course unde-

cidable in general. In practice we can only assure correctness to some limited degree

of con�dence by a mix of software engineering techniques such as formal veri�cation,

13

www.manaraa.com

testing, quality assurance, etc. Responsibility for implementing transactions as cor-

rect state transforms has traditionally been assigned to the application programmer.

Even in theory DBMS mechanisms can never fully take over this responsibility.

DBMS mechanisms can help in assuring the correctness of a state by enforcing

consistency constraints on the data. Consistency constraints are also often called

integrity constraints or integrity rules in the database literature. Since we are using

integrity in a wider sense we prefer the former term.

The relational data model in particular imposes two consistency constraints [4, 5].

� Entity integrity stipulates that attributes in the primary key of a base relation

cannot have null values. This amounts to requiring that each entity represented

in the database must be uniquely identi�able.

� Referential integrity is concerned with references from one entity to another. A

foreign key is a set of attributes in one relation whose values are required to

match those of the primary key of some speci�c relation. Referential integrity

requires that a foreign key either be all null or a matching tuple exist in the

latter relation. This amounts to ruling out dangling references to non-existent

entities.

Entity integrity is easily enforced. Referential integrity on the other hand requires

more e�ort and has seen limited support in commercial products. The precise manner

in which to achieve it is also very dependent on the semantics of the application. This

is particularly so when the referenced tuple is deleted. There are several choices as

follows: (i) prohibit this delete operation, (ii) delete the referencing tuple (with a

14

www.manaraa.com

possibility of further cascading deletes), or (iii) set the foreign key attributes in the

referencing tuple to null. There are proposals for extending SQL so that these choices

can be speci�ed for each foreign key.

The relational model in addition encourages the use of domain constraints whereby

the values in a particular attribute (column) are constrained to come from some given

set. These constraints are particularly easy to state and enforce, at least so long as

the domains are de�ned in terms of primitive types such as integers, decimal numbers

and character strings. A variety of dependency constraints which constrain the tuples

in a given relation have been extensively studied in the database literature.

In the limit a consistency constraint can be viewed as an arbitrary predicate

which all correct states of the database must satisfy. The predicate may involve any

number of relations. Although this concept is theoretically appealing and
exible

in its expressive power, in practice the overhead in checking the predicates for every

transaction has been prohibitive. As a result relational DBMS's typically con�ne their

enforcement of consistency constraints to domain constraints and entity integrity.

3.2 Continuity of Operation

The problem of maintaining continuity of operation in the face of natural disasters,

hardware failures and other disruptive events has received considerable attention in

both theory and practice [10]. The basic technique to deal with such situations is

redundancy in various forms. Recovery mechanisms in DBMS's must also ensure that

we arrive at a consistent state. In many respects these mechanisms are \syntactic"

in the sense of being application independent, much as mechanisms for the �rst three

properties of section 3.1 were.

15

www.manaraa.com

3.3 Authenticated Users

Authentication is primarily the responsibility of the Operating System. If the Oper-

ating System is lacking in its authentication mechanism it would be very di�cult to

ensure the integrity of the DBMS itself. The integrity of the database would thereby

be that much more suspect. It therefore makes sense to not duplicate authentication

mechanisms in the DBMS.

Authentication underlies some of the other principles, particularly, least privilege,

separation of duties, reconstruction of events and delegation of authority. In all of

these the end objective can be achieved to the fullest extent only if authentication is

possible at the level of individual users.

3.4 Least Privilege

The principle of least privilege translates into a requirement for �ne grained access

control. We have earlier noted that least privilege must be tempered with practicality

in avoiding excessive red tape. Nevertheless a high-end DBMS should provide for

access control at very �ne granularity, leaving it to the database designers to apply

these controls as they see �t.

It is clear from the Clark-Wilson papers, if not evident from earlier work, that

modi�cation of data must be controlled in terms of transactions rather than blanket

permission to write. We have already put forth the concept of encapsulated updates

for this purpose. In terms of the relational model it is not immediately obvious at

what granularity of data this should be enforced.

For purpose of controlling read access DBMSs have employed mechanisms based

16

www.manaraa.com

on views (as in System R) or query modi�cation (as in INGRES). These mechanisms

are extremely
exible and can be as �ne grained as desired. However neither one of

these mechanisms provides the same
exibility for
exible control of updates. The

fundamental reason for this is our theoretical inability to translate updates on views

unambiguously into updates of base relations. As a result authorization to control

updates is often less sophisticated than authorization for read access.

In relational systems it is natural for obvious reasons to represent the access matrix

by one or more relations [25]. At a coarse level we might control access by tuples of

the following form

user, transaction, relation

meaning that the speci�ed user can execute the speci�ed transaction on the speci�ed

relation. Tuples of the form shown below would give greater selectivity

user, transaction, relation, attribute

This would allow us to control the execution of transactions such as, \give everyone

a 5% raise," without giving the same transaction permission to change employee

addresses. The following authorization tuple accomplishes this.

Joe, Give-5%-raise, Employees, Salary

A transaction which gives a raise to a speci�c employee needs a further dimension of

authorization to specify which employee it pertains to. Thus, if Joe is authorized to

give a 5% raise to John the authorization tuple would look as follows.

Joe, Give-5%-raise, John, Employees, Salary

17

www.manaraa.com

We are assuming here that John uniquely identi�es the employee receiving the raise.

The update is restricted to the Salary attribute of a speci�c tuple with key equal to

`John' in the Employees relation. So it takes a key, relation and attribute to specify

the actual parameter of such a transaction.

Now consider a transaction which moves money from account A to account B,

i.e., there are two actual parameters of the transaction. In terms of least privilege we

need the ability to bind this transaction to updating the two speci�c accounts A and

B. More generally we will have transactions with N parameters identi�ed in a actual

parameter list. So we need authorization tuples of the following form,

user, transaction, actual parameter list

where each parameter in the actual parameter list speci�es the item authorized for

update by specifying one of the following identi�ers

� relation,

� relation, attribute,

� key, relation, attribute.

These three cases respectively give us relation level, \column" level and element level

granularity of update control.

It is also important to realize that element-level update authorizations should

properly be treated as consumable items. For example, once money has been moved

from account A to account B the user should not be able to move it again, without

fresh authorization to do so.

18

www.manaraa.com

3.5 Separation of Duties

Separation of duties �nds little support in existing products. Although it is possible

to use existing mechanisms for this purpose, these mechanisms have not been designed

with this end in mind. As a result their use is awkward at best. This fact was noted

by the DBMS group at the 1989 NIST data integrity workshop who concluded their

report with the following recommendation [19, section 4.3].

While the group was able to use existing DBMS features to implement sepa-

ration of roles controls, we were, however, unable to use existing features in a

way that would support easy maintenance and certi�cation. We recommend

that data de�nition and/or consistency check features be enhanced to provide

operators that lend themselves to the expression of integrity controls and to

allow separation of integrity controls and traditional data.

Separation of duties is inherently concerned with sequences of transactions, rather

than individual transactions in isolation. For example consider a situation in which

payment in the form of a check is prepared and issued by the following sequence of

events.

1. A clerk prepares a voucher and assigns an account.

2. The voucher and account are approved by a supervisor.

3. The check is issued by a clerk who must be di�erent from the clerk in step 1.

Issuing the check also debits the assigned account. (Strictly speaking we should

debit one account and credit another in equal amounts. The important point

for our purpose is that issuing a check modi�es account balances.)

19

www.manaraa.com

This sequence embodies separation of duties since the three steps must be executed

by di�erent people. The policy moreover has a dynamic
avor in that a particular

clerk can prepare vouchers as well as, on di�erent occasions, issue checks. However

he cannot issue a check for a voucher prepared by himself.

Implementation of this policy in a paper-based system follows quite directly from

its statement.

� The voucher is realized as a form with blank entries for the amount and account,

as well as for signatures of the people involved. As the above sequence gets

executed these blanks are �lled in. On its completion copies of the voucher are

�led in various archives for audit purposes.

� The account is represented by say a ledger card, where debit and credit entries

are posted along with references to the forms which authorized these entries.

By their very nature paper-based controls rely on employee vigilance and inter-

nal/external audits for their e�ectiveness. Computerization brings with it the scope

for enforcing the required controls by means of an infallible, ever vigilant and omni-

scient automaton, viz., the computer itself.

The crucial question is how do we specify and implement similar controls for

separation of duties in a computerized environment? A mechanism for this purpose

is described in [22]. This mechanism of transaction-control expressions is based on

the following di�erence between vouchers and accounts.

� The voucher is transient in that it comes into existence, has a relatively small

sequence of steps applied to it and then disappears from the system (possibly

20

www.manaraa.com

leaving a record in some archive). The history of a voucher can be prescribed

as a �nite sequence of steps with an a priori maximum length.

� The account on the other hand is persistent in the sense it has a long-lived,

and essentially unbounded, existence in the system. During its life there may

be a very large number of credit and debit entries for it. Of course, at some

point the account may be closed and archived. The key point is that we can

only prescribe its history as a variable-length sequence of steps with no a priori

maximum length.

Both kinds of objects are essential to the logic and correct operation of an informa-

tion system. Transient objects embody a logically complete history of transactions

corresponding to a unit of service provided to the external world by the organization.

Persistent objects embody the internal records required to keep the organization func-

tioning with an accurate correspondence to its interactions with the external world.

Separation of duties is achieved by enforcing controls on transient objects, for

the most part. The crucial idea, which makes this possible, is that transactions can

be executed on persistent objects only as a side e�ect of executing transactions on

transient objects. This thesis is actually simply borrowed from the paper-based world

where it has been routinely applied ever since bookkeeping became an integral part

of business operations.

With this perspective we arrive at the diagram shown in �gure 1. The idea is that

a sequence of transactions is viewed as transient data in the database. In this picture

there is a double encapsulation of the database, �rst by transactions on persistent

data and then by transactions on transient data. Users can directly only execute the

21

www.manaraa.com

latter. The former are triggered indirectly as a result when the transient is in the

proper state for doing so. In other words transient data is singly encapsulated and

has direct application of separation of duties. Persistent data is doubly encapsulated

and has indirect application of separation of duties by means of transient data.

3.6 Reconstruction of Events

The ability to reconstruct events in a system serves as a deterrent to improper be-

havior. In the DBMS context the mechanism to record the history of a system

is traditionally called an \audit trail." As with the principle of least privilege, a

high-end DBMS should be capable of reconstructing events to the �nest detail. In

practise this ability must be tempered with the reality that gathering audit data

indiscriminately can generate overwhelming volume. Therefore a DBMS must also

allow �ne-grained selectivity regarding what is audited. It should also structure the

audit trail logically so that it is easy to query. For instance, logging every keystroke

does give us the ability to reconstruct the system history accurately. However with

this primitive logical structure one needs substantial e�ort to reconstruct a particular

transaction. In addition to the actual recording of all events that take place in the

database, an audit trail must also provide support for true auditing, i.e., an audit

trail must have the capability \for an authorized and competent agent to access and

evaluate accountability information by a secure means, within a reasonable amount

of time and without undue di�culty" [7]. In this respect DBMSs have a signi�cant

advantage, since their powerful querying abilities can be used.

The ability to reconstruct events has di�erent meaning to di�erent people. At one

end of the spectrum, we have the requirements of Clark and Wilson [3]. They require

22

www.manaraa.com

only two things:

1. A complete history of each and every modi�cation made to the value of an item.

2. With each change in value of an item, store the identity of the person making

the change.

Of course, the system must be reliable in that it makes exactly those changes that

are requested by users and the binding of a value with its author is also exact. Clark

and Wilson call this \attribution of change."

This can be easily accomplished if we are willing to extend slightly the standard

logging techniques for recovery purposes. For each transaction, a recovery log contains

the transaction identi�er, some before-images, and the corresponding after-images. If

we augment this by recording in addition the user for each transaction, we have the

desired binding of each value to its author. There is one other change that needs to

be made. In order to support recovery, there is a need to keep a log only up to a

point from which a complete database backup is available. Of course, now there is a

need to archive the logs so they remain available.

Others have argued that this simple \attribution of change" is not su�cient. We

need an audit trail, a mechanism for a complete reconstruction of every action taken

against the database: who has been accessing what data, when, and in what order.

Thus, it has three basic objects of interest:

1. The user - who initiated a transaction, from what terminal, when, etc.

2. The transaction - what was the exact transaction that was initiated.

23

www.manaraa.com

3. The data - what was the result of the transaction, what were the database states

before and after the transaction initiation.

For this purpose a database activity model has been recently proposed [12] that im-

poses a uniform logical structure upon the past, present, and future data. There is

never any loss of historical or current information in this model, thus the model pro-

vides a mechanism for complete reconstruction of every action taken on the database.

It also logically structures the audit data to facilitate its querying.

3.7 Delegation of Authority

The need to delegate authority and responsibility within an organization is essential

to its smooth functioning. It appears in its most developed form with respect to

monetary budgets. However the concept applies equally well to the control of other

assets and resources of the organization.

In most organizations the ability to grant authorization is never completely un-

constrained. For example, a department manger may be able to delegate substantial

authority over departmental resources to project managers within his department

and yet be prohibited to delegate this authority to project managers outside the de-

partment. These situations cloud the classic distinction between discretionary and

mandatory policies [17, 24]. The traditional concept of ownership as the basis for

delegating authority also becomes less applicable in this context [14]. Finally we

need the ability to delegate privileges without having the ability to exercise these

privileges. Some mechanisms for this purpose have been recently proposed [14, 23].

The complexity introduced by dynamic authorization has been recognized ever

24

www.manaraa.com

since researchers considered this problem, e.g., as stated in the following quote [20].

\. . . it is relatively easy to envision (and design) systems that statically express

a particular protection intent. But the need to change access authorizations

dynamically . . . introduces much complexity into protection systems."

This fact continues to be true in spite of substantial theoretical advances in the

interim [21]. Existing products provide few facilities in this respect and their mecha-

nisms tend to have an ad hoc
avor.

3.8 Reality Checks

This principle inherently requires activity outside of the DBMS. The DBMS does have

obligation to provide an internally consistent view of that portion of the database

which is being externally veri�ed. This is particularly so if the external inspection

is conducted on an ad hoc on-demand basis. The DBMS can also play a signi�cant

role in ensuring that information known to be only partially valid and complete is

presented as such. That is the DBMS can qualify its answers based on the scope of its

knowledge about deviations from the external reality. A mechanism for this purpose

has been proposed in [15].

3.9 Ease of Safe Use

Ease of safe use is more an evaluation of the DBMS mechanisms than something

to be enforced by the mechanisms themselves. The mechanisms should of course

have fail-safe defaults [20], e.g., access is not available unless explicitly granted or

this default rule is explicitly changed to grant it automatically. DBMS's do o�er a

25

www.manaraa.com

signi�cant advantage in providing user friendly interfaces intrinsically for their main

objective of data manipulation. These interface mechanisms can be leveraged to make

the authorization mechanisms easy to use. For instance, having the power of SQL

queries to review the current authorizations is a tangible bene�t in this regard.

4 CONCLUSION

In a nutshell our conclusion is that realistic DBMS mechanisms do exist to support the

integrity objective of information systems. Some are well established in the literature

while others have been proposed more recently and are not so well known. Our

principal contribution is to identify these mechanisms and to identify the gaps where

none existed or had been fully articulated.

In terms of what DBMS mechanisms can do for us, we can group the nine princi-

ples enumerated in this paper as shown in table 2. Group I principles are adequately

treated by current DBMS mechanisms and have been extensively studied by database

researchers. With the single exception of assuring correctness of state transformations

these principles can be achieved by DBMS mechanisms. Techniques for implementing

well-formed transactions and maintaining continuity of operation across failures have

been studied extensively. Their practical feasibility has been amply demonstrated

in actual systems. Assuring that well-formed transactions are correct state transfor-

mations remains a formidable problem, but there is little that the DBMS can do to

alleviate it. As such it is a problem outside the scope of DBMS mechanisms. The

DBMS can (i) enforce encapsulation of updates by restricting their occurrence to

be within transactions, and (ii) provide controls for installing and maintaining these

26

www.manaraa.com

transactions.

Group II principles need newer mechanisms and conceptual foundations. Several

promising approaches have emerged in the literature. Practical demonstration of

their feasibility remains to be done, but in concept they do not present prohibitive

implementation problems. They do require that current DBMS's be extended in

signi�cant ways. Group II principles are the ones where additional DBMSmechanisms

hold the promise of greatest bene�t.

Group III principles are important but there is little that DBMSmechanism can do

to achieve them. Authentication is principally an operating system problem. Reality

checks necessarily involve external procedures. Ease of safe use is more an evaluation

of the DBMS mechanisms than something to be enforced by the mechanisms them-

selves. It is facilitated in the DBMS context due to the intrinsic DBMS requirement

of user friendly query languages.

In conclusion for group I principles we need little more than has currently been

demonstrated in actual products. For group II principles, current systems do some-

thing for each one but do not go far enough. There are several promising proposals

but no \worked examples." Group III principles are important but are not fully

achievable by DBMS mechanisms alone.

Acknowledgment

We are indebted to John Campbell, Sylvan Pinsky and Howard Stainer for their

support and encouragement, making this work possible.

27

www.manaraa.com

References

[1] Clark, D.D. and Wilson, D.R. \A Comparison of Commercial and Military Com-

puter Security Policies." Proc. IEEE Symposium on Security and Privacy, pages

184-194 (1987).

[2] Clark, D.D. and Wilson, D.R. \Comments on the Integrity Model." In [18],

section 9, pages 1-6 (1989).

[3] Clark, D.D. and Wilson, D.R. \Evolution of a Model for Computer Integrity."

In [19], section A.2, pages 1-13 (1989).

[4] Codd, E.F. \Extending the Relational Database Model to Capture More Mean-

ing." ACM Transactions on Database Systems 4(4):397-434 (1979).

[5] Date, C.J. An Introduction to Database Systems. Volume I, Addison-Wesley,

fourth edition (1986).

[6] Denning, D.E. and Denning, P.J. \Data Security." ACM Computing Surveys

11(3):227-249 (1979).

[7] Department of Defense National Computer Security Center. Department of De-

fense Trusted Computer Systems Evaluation Criteria. DoD 5200.28-STD (1985).

[8] Fernandez, E.B., Summers, R.C. and Wood, C. Database Security and Integrity.

Addison-Wesley (1981).

[9] Gasser, M. Building a Secure Computer System. Van Nostrand Reinhold (1988).

28

www.manaraa.com

[10] Gray, J. \Notes on Data Base Operating Systems." In Operating Systems|

An Advanced Course, Bayer, R. et al (editors), Springer-Verlag, pages 393-481

(1978).

[11] Gray, J. \Why Do Computers Stop and What Can Be Done About It?" Proc.

IEEE Symposium on Reliability in Distributed Software and Database Systems,

pages 3-12 (1986).

[12] Jajodia, S., Gadia, S.K., Bhargava, G. and Sibley, E. \Audit Trail Organiza-

tion in Relational Databases." In Database Security III: Status and Prospects,

Spooner, D.L. and Landwehr, C.E. (editors), North-Holland, pages 269-281

(1990).

[13] Linden, T.A. \Operating System Structures to Support Security and Reliable

Software." ACM Computing Surveys 8(4):409-445 (1976).

[14] Mo�ett, J.D. and Sloman, M.S. \The Source of Authority for Commercial Access

Control." Computer 21(2):59-69 (1988).

[15] Motro, A. \Integrity = Validity + Completeness." ACM Transactions on

Database Systems 14(4):480-502 (1989).

[16] Murray, W.H. \Data Integrity in a Business Data Processing System." In [18].

[17] Murray, W.H. \On the Use of Mandatory." In [18].

[18] Report of the Invitational Workshop on Integrity Policy in Computer Information

Systems (WIPCIS), Katzke, S.W. and Ruthberg, Z.G. (editors), NIST, Special

Publication 500-160 (January 1989).

29

www.manaraa.com

[19] Report of the Invitational Workshop on Data Integrity, Ruthberg, Z.G. and Polk,

W.T. (editors), NIST, Special Publication 500-168 (September 1989).

[20] Saltzer, J.H. and Schroeder, M.D. \The Protection of Information in Computer

Systems." Proceedings of IEEE 63(9):1278-1308 (1975).

[21] Sandhu, R.S. \The Schematic Protection Model: Its De�nition and Analysis for

Acyclic Attenuating Schemes." Journal of ACM 35(2):404-432 (1988).

[22] Sandhu, R.S. \Transaction Control Expressions for Separation of Duties." Proc.

4th Aerospace Computer Security Applications Conference, pages 282-286 (1988).

[23] Sandhu, R.S. \Transformation of Access Rights." Proc. IEEE Symposium on

Security and Privacy, 259-268 (1989).

[24] Sandhu, R.S. \Mandatory Controls for Database Integrity." In Database Security

III: Status and Prospects, Spooner, D.L. and Landwehr, C.E. (editors), North-

Holland, pages 143-150 (1990). Proc. se

[25] Selinger, P.G. \Authorization and Views." In Distributed Data Bases, Dra�an,

I.W and Poole, F. (editors), Cambridge University Press, pages 233-246 (1980).

[26] Wimbrow, J.H. \A Large-Scale Interactive Administrative System." IBM Sys-

tems Journal 10(4):260-282 (1971).

30

www.manaraa.com

INTEGRITY PRINCIPLE DBMS MECHANISMS

Well-formed transactions Encapsulated updates
Atomic transactions
Consistency constraints

Authenticated users Authentication

Least privilege Fine grain access control

Separation of duties Transaction controls
Layered updates

Reconstruction of events Audit trail

Delegation of authority Dynamic authorization
Propagation constraints

Reality checks Consistent snapshots

Continuity of operation Redundancy
Recovery

Ease of safe use Fail-safe defaults
Human factors

Table 1: Integrity Principles and Mechanisms

31

www.manaraa.com

Users

Transactions on Transient Data

Transactions Database of
on Persistent Data Transient Data

Database of Persistent data

Figure 1: Layered Updates

32

www.manaraa.com

Group I Group II Group III

Well-formed transactions Least privilege Authenticated users
Continuity of operation Separation of duties Reality checks

Reconstruction of events Ease of safe use
Delegation of authority

Table 2: Integrity Principles

33

